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Abstract — Pedestrian detection is a challenging problem 
studied over decades. Most algorithms are based on human 
appearance. Only few works consider motion as a feature 
component. In this paper, however, we tackle this problem only 
considering short periods of pedestrian walking. This motion 
does not depend on the variations of pedestrian pose, body shape, 
illumination, and background. We model pedestrian motion that 
has unique properties compare to background and rigid objects 
motion in spatial-temporal motion profiles. This observation 
helps us to identify pedestrian leg motion along with body motion 
over a short time period. Our method also works for a vehicle 
borne camera where background also moves. We achieved more 
robust results by dealing with crowds, and other degenerating 
cases of human motion against background and dynamic scenes. 
The method has a low computational cost on a motion profile and 
it can be combined with a shape-based method as pre-screening 
for reducing the false positives. It also provides a feasible way to 
find human behaviors.  

Keywords—pedestrian motion; pedestrian detection; spatial-
temporal filtering; driving video; tracking 

I. INTRODUCTION 
Pedestrian detection [2,3,4,5,6] is crucial for intelligent 

vehicle, surveillance, and human behavior understanding. 
Pedestrian detection in driving video [7] is more challenging 
than in surveillance video taken by a static camera due to the 
dynamically changing environment, which prevents 
background subtraction as detection methods. Many works 
have explored this topic and achieved great success [8,10] 
based on identifying human appearances, though such methods 
may be influenced by variations of pedestrians, complex 
background, crowds [1,23, 25], and occlusions of other objects 
[13]. HOG [9,11], Haar-type feature, LBP, and their variations 
are the main features used in sliding window based shape 
approaches [14,15].  

Motion is another clue not thoroughly explored for 
pedestrian detection. As initial explorations, either optical flow 
combined with shape [16] or longer term action in trajectories 
[17,19] are examined independently. The former added 
velocity in the recognition if the camera itself has no 
movement, and the latter employs acceleration, i.e., leg 
stopping and stepping in walking, even camera is moving. 
Walking action is common for pedestrians [20,21,26], which is 
less varied than shape from person to person and is much more 
different from other rigid motion such as vehicle motorized 
motion. Either static background or dynamic vehicles captured 
by a vehicle borne camera has the smooth motion, which is 

guaranteed by the driving mechanism of four-wheeled vehicles. 
If the motion can be profiled properly in a spatial-temporal 
image [18], the pedestrian leg traces can be observed clearly as 
a chain of rings. In our previous work on pedestrian 
trajectories, HOG and template matching are combined to 
obtain leg crossings on pedestrian trajectories (HOGTM) [17]. 
However, such ideal templates are unable to handle the 
situations of crowds with overlapped trajectories, and the fast 
vehicle/camera motion that deforms trajectories at rings and 
chains. Another approach in [19,24] finds non-smooth motion 
flow (NSM) at legs and body that appear as corner points on 
walking trajectories in contrast to the smooth background and 
vehicle traces. It has higher detection rate on pedestrians 
including crowds, but also brings a high false positive rate from 
intersecting traces due to occlusion, and from the aliasing and 
digital noise due to the insufficient temporal sampling of video 
on fast passing objects. 

The objective of this work is to achieve pedestrian 
detection robustly from motion, which includes more cases of 
vehicle/camera motion and pedestrian depth, crowds, and 
occlusion with other object motion/traces. We design spatial-
temporal filters for detecting pedestrian trajectories at signature 
spots in the motion profiles, which turns the temporal feature 
extraction to shape filtering on the motion profiles. The 
accuracy using public dataset achieves good results.   

This paper provides a comprehensive solution for motion 
based pedestrian detection. Pedestrians have articulation 
motion particularly in leg stepping, which is unique in the 
second derivative of leg positions. This is distinguishable from 
other object motion with smoothly changed velocities. In the 
motion profile, pedestrian steps form a chain trajectory. This 
allows the pedestrian recognition regardless of the variations of 
pedestrian pose, shape, color, illumination, background, etc.  

In the following sections, the paper starts from a sensing 
scheme to capture motion on road when a vehicle borne camera 
is moving on street. Then, the motion behavior of pedestrian, 
background, and possible dynamic vehicles are compared in 
Sec. II. The spatial-temporal filtering algorithm for the leg 
chain detection is introduced in Sec. III. Section IV is the 
pedestrian recognition from the leg information. Section V 
discusses the experimental results and evaluation, followed 
with conclusion in Section VI.  

II. OBTAINING MOTION IN DRIVING VIDEO PROFILES 

A. Sensing Scenes at Different Depths 
To profile motion in a visual space for analysis, we first 
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create spatial-temporal images at different viewing angles. A 
forward-looking video camera is set near the back mirror of a 
car during vehicle motion. The horizon is located once at the 
height of FOE (Focus of Expansion) in the frame, which is 
obtained via the color accumulation of frames over a section of 
video when the car moves straight. Below the horizon, several 
horizontal zones, e.g., four zones z1~z4 are set in the frame to 
cover depth ranges 5-15m, 15-30m, 30-60m, and beyond 60m 
briefly on the ground. According to the projected positions of 
the depth ranges in the frame, as well as the average leg height 
of pedestrians, we set the zones at coordinates y1<y2<y3<y4 
from bottom to horizon in the video frame. Their heights are 
set h1>h2>h3>h4, with h1 at lower zone for close pedestrians 
and h4 at upper zone for far depth, respectively. These zones 
have overlaps under the perspective projection. With the fixed 
camera height close to the height of pedestrians, these zones 
can cover most part of pedestrians in all distances. In the upper 
zone, background objects, passing vehicles, body of close 
pedestrians, legs and body of far pedestrians are captured. In 
the lower zone, legs of close pedestrians and road surface are 
captured. Other zones include mixtures of these two cases.  

Multiple motion profiles, e.g., Pi(x,t), i=1,..4, are condensed 
from these zones in this work. We employ the temporal profile 
method in [18] to sample all the zones. In detail, pixels in a 
zone are vertically averaged to obtain a pixel line, and lines 

from consecutive frames are connected to form a motion 
profile image, P(x,t). As shown in Fig. 2, the profile contains 
motion trajectories of scenes and pedestrians, referred to 
traces, for analyzing long-term motion than the between-frame 
optical flow. From four zones, therefore, four stacked motion 
profiles are displayed in Fig. 3. We can see some close-to-
horizontal trajectories from cross-street walking and the waved 
background motion vertically. One of the most complex 
motion profile from a crowd in Caltech database [2] is also 
shown in Fig. 4. We search pedestrian walking traces in the 
limited number of motion profiles such that the window 
scanning over the entire frame is unnecessary. On the other 
hand, the zone heights hi should not be too large so as to 
prevent the leg traces being blurred out in the motion profiles 
due to the color condensing. If the camera is set at a lower 
position on a car, which is a preferred case, zones will be more 
overlapped in the frame, and the horizontal lines of sight can 
reach a farther depth. In such a situation, fewer zones can cover 
entire depth range. Because the motion profiles are from 
overlapped zones, a walking pedestrian will be captured at least 
in one profile. Detecting a pedestrian trace xi(t) in ith motion 
profile will flag the zone at frame t as pedestrian occupied. 

B. Leg Chains of Pedestrian Traces and Object Traces 

 

 
Fig. 3.  Motion profiles Pi(x,t) from zones z1, z2, z3, and z4 in the order of low-to-high. The vertical axes are the time/frame, and the horizontal axes are image x 
coordinates. Slanted and close-to-horizontal traces are crossing vehicles in front of camera. The lower motion profile (left) covers more flat ground. Upper 
profile (right) shows scene traces projected from far depth. Pedestrian trajectories are visible as non-smooth chains near the ground on the right margin. 

 
Fig. 2. A motion profile P(x,t) (right) generated from a video clip (left) 
at a high position near the horizon. Two frames at arrow pointed times 
are displayed. Horizontal traces in the motion profile are passing 
vehicles and vertical curves are background motion. Leg motion of 
pedestrains is also visible as chains. 

 
Fig. 1.  Image zones (colored on right) are located under the horizon to 
cover legs at different depths (colored on left) ahead. Displayed zones 
only indicate their heights while the horizontal span is the entire frame. 
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 There are distinct motion patterns for pedestrian among the 
scene background. More detailed than the pedestrian 
trajectories analyzed in [17, 19], we found the properties in the 
motion profile (Fig. 5) under the ideal case of slow 
vehicle/camera motion:  

(a) Leg chain structure: two legs move alternatively with 
stepping and standing periods. Pedestrian trajectory is visually 
formed in the motion profile as a chain composed of rings with 
leg crossing (X-pattern) and starting/ending points (L-patterns). 

(b) Temporal property: the period of a walking cycle is 
1.26 second in average [22] irrelevant to the vehicle/camera 
moving speed. Short-term standing leg has an average time of 
one second. 
 (c) Spatial property: the spatial interval (horizontal width) 
of steps in the motion profile is related to real step distance and 
pedestrian depth in the 3D space. 

In the real situations, the pedestrian leg chain undergoes 
several types of deformation that previous HOGTM method 
[17] is incapable to deal with. 
 (d) Chain degeneration: when the vehicle/camera has a fast 
translation or turning, the image velocity of scenes increases. 
This will skew the leg chain of pedestrian trace more or less 
horizontally in the motion profile, making the leg crossing 
degenerated as in Fig. 6.a. The HOGTM method [17] based on 

nice leg chains will have a high false negative rate. 
(e) Torso are mixed with arms in the pedestrian traces (Fig. 

6.b). Some pedestrian wearing skirt also affects the leg chain 
detection.  

Although object trajectories in video are mostly smooth in 
long term motion, front narrow objects may occlude 
background objects. Their trajectories form T-junctions in the 
motion profile as shown in Fig. 4. Through the examination of 
a large volume of videos and their motion profiles, we 
summarize detailed relation between various traces and their 
responses to features such as edge, stripe, direction, and length 
in Table I. 

III. LEG TRAJECTORY DETECTION BY FILTERING 
The pedestrian detection now becomes the recognition of 

leg-chains with rings and crossings in the motion profile, which 

t 

 x 
Fig. 5.  Typical leg chain of pedestrian walking in the motion profile with   
consistent step width and period. 

 

Fig. 6.  Degenerate traces of leg chains in the motion profiles due to the skew 
of the motion profile during vehicle turning. (left) Trace skewed left when the 
car turned right. (right) Body trace mixed with leg trace after profiling. 

                         

Vehicle turn 

Mixed trace 

  
Fig. 4.  Motion profiles averaged in zones z1, z2, z3, and z4 from low to high positions. They record scenes from close road surface to far-away horizon. Pedestrian 
crowd moves in front of the camera, which makes complex trajectories. The time axes are all upward. 
 

Table I Motion characteristics between pedestrian and other object traces in the motion profiles 
Traces Spatial property: image width Spatio-temporal property: velocity Temporal property: frames 

Edge detection Leg-width stripe detection Trace slanted (fast) Trace vertical (slow) Short stripe Long traces 
Objects 

occluding others 
Appear as 

edges 
Narrow poles and fence 

are stripes 
Moving fast due to 

close depth 
  Long and 

continuous  
Background 

Objects 
Mostly edges  Some surface patterns may 

appear as stripe 
Skew only during 
vehicle rotation 

Far objects have 
slow motion 

Occluded 
case 

Generally, 
long 

Dynamic 
vehicles 

Mostly edges Partially appear as stripe, 
e.g., tire 

Passing vehicle has 
fast speed 

Parallel ones are slow 
relative to camera 

Passing one 
is short time 

Parallel one 
is long time 

Stopping legs Edges on two 
sides 

Leg bounded by two 
edges 

 Close to vertical 
even skewed  

Within a 
step cycle 

 

Stepping legs Unstable edge/ 
motion blur 

Leg has response Fast and thus 
slanted in profile 

 Even shorter  
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is easy by humans. If a part of chain is identified at any zone, 
we claim the human is detected there. With a smooth camera 
motion, background motion has long and smooth traces in 
contrast to rhythmic pedestrian walking. To locate general leg 
chains including degenerate cases, we focus on a signature 
pattern in this work, i.e., thick and short strokes of stopping 
(standing) legs on pedestrian traces, because thin and fast 
traces of stepping legs may be extended largely in width if they 
are skewed spatially. 

We classify traces to pedestrian and non-pedestrian 
according to their spatial properties, temporal continuity and 
smoothness. Such properties can be described spatially by 
{edge, stripe}, spatio-temporally by {slanted, vertical} trace 
orientation, and temporally by {long, short} trace period in the 
motion profile. As indicated in Table I, a pedestrian leg has an 
estimated width and thus appears as a stripe bounded by two 
edges in the motion profile. The orientation of a trace is slanted 
if the motion is fast. An object trace is temporally long and 
smooth, while walking legs alternate frequently. Therefore, a 
pedestrian chain is distinguishable from its short standing 
period and leg crossing in the motion profile.  

In practice, we use three concatenated filters to (1) spatially 
locate leg-width stripes among all traces, (2) spatio-temporally 
identify slow-moving stripes, and then (3) temporally track the 
stripe length for short strokes. This is more scalable and robust 
to deformed traces than previous HOGTM and corner based 
methods [17,19]. 

Spatial filtering: the minimum clue on shape used in this 
work is the average leg-width w in a frame/profile from a 
particular depth after brief calibration. We use a 1D horizontal 
Laplacian of Gaussian filter, Lw×1(x), as in Fig. 7a to obtain leg-

width stripes in the motion profile. That is 
                            S(x,t) = Lw×1(x)⊕P(x,t)                        (1) 

where ⊕ indicates convolution. One example resulted is in Fig. 
7d containing both standing and stepping leg traces after this 
filtering. However, strong edge traces also have low responses 
to the filter, which have to be removed. To confirm a stripe 
other than an edge, we search for two zero-crossing points, i.e., 
edges, around the peak response of S(x,t). Or equivalently, 
search for two neighboring peaks with the opposite sign from 
the focused peak in S(x,t) (Fig. 7e).  

Spatial-temporal filtering: the traces in S(x,t) are then 
examined spatio-temporally by their orientations. The standing 
legs have slow image motion in the motion profile even being 
skewed spatially by fast camera motion. By skewing a vertical 
1D temporal averaging filter R1×m(t) spatially in the x direction, 
an oriented filter, Rθ(t), θ∈[-45°,45°] is generated for the 
motion profile. Here m is consistent with the average leg-
stopping period of 1 second. We identify orientated traces of 
possible pedestrians using five directional Gaussian filters, i.e.,  

T(x,t) = maxθi{Rθi(t)⊕S(x,t)},        i = 0, ±1, ±2        (2) 

     (a)  

 x   (b) T(x,t)  
Fig. 8.  Spatio-temporal filter results to remove fast traces. (a) Five skewed 
orientations of filter Rθ(t) to tolerate varied leg-motion speed. Composite 
filter effect is shown. (b) By selecting the maximum response from filters in 
5 directions, the slow-moving traces close to vertical is remained. 
  
  

 

(a) Lw×1(x)               (b) 
t 

 x      (c)  Motion profile P(x,t)              
 

   
(d) S(x,t)                                                   (e) 

Fig. 7.  Filters to obtain leg-width stripes in the motion profiles. (a) Profile of 
a filter to extract leg-width stripes. (b) Different widths of filter for different 
zones from low-to-high to obtain leg traces at different depths. (c) A motion 
profile with pedestrian leg trace at center along with car traces and ground 
patterns. (d) Filter response in both positive and negative values. (e) Zero-
crossing points (i.e., edges) bound stripes. Blue indicates positive values and 
green indicates negative values in S(x,t). 
  

 

  
Fig. 9. Trace coherence in the motion profiles between zones. (left) lower 
profile, (right) Detected stopping legs are connected with stepping leg 
traces from the same zone and overlapped with body traces from higher 
zone. Red channel shows possible body traces at upper motion profile, 
green channel is for standing leg strokes, and blue channel is stepping leg 
traces. 
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The composite effect of filters L and R is given in Fig. 8a. The 
resulting T(x,t) removes fast object traces but keep long and 
slow object traces as in Fig. 8b. A threshold δ1 is set to select 
stripes that have high responses in T(x,t) such that fast/slanted 
traces are ignored. 
 Temporal filtering: now the trace continuity is examined 
through the tracking of stripes along their peaks in T(x,t). The 
trace length is counted incrementally during tracking. Only the 
strokes finished shorter than a threshold δ2 are output as 
candidates of stopping leg trace. Most object traces have been 
removed at this stage, except some short traces cut by other 
traces due to occlusion and fast vehicle turning. 

IV. PEDESTRIAN DETECTION BY MOTION CONTINUITY 
In the first stage, we have detected pedestrian walking 

trajectories in the profile. However, object motion may also be 
misclassified if only short strokes are targeted, which yields 
false positives. The special events causing these are: (1) 
occlusion, i.e., slow moving object traces are frequently 
occluded by slanted traces of fast moving vehicles. Such short 
stripes form T-junctions in between slanted traces shown in 
Fig. 2. (2) Sudden turning of vehicle/camera, may cause short 
segments on all traces that have close-to-zero velocities 
shortly (trace direction changing from – to + or vice versa 
during vehicle turning).  These segments are not linked but 
kept in parallel. (3) Some surface marks on road and tire traces 
also remain as false positives. 

In the second stage, we use the motion continuity of two 
legs in walking cycle to remove false positives. After tracking 
for short strokes in the previous section, we track the body 
traces to link the stopping strokes and thus reject standalone 
short stripes. 

Stepping leg traces can also be detected by the first 1D filter 
of Laplacian of Gaussian Lw×1(x), and they are tracked along 
edges. If standing leg strokes are connected with traces of 
stepping legs, leg traces are completed as a chain. We do this 
extension for the result visualization as well. Also, after 
locating leg traces at a profile, the trace in the higher profile 
may contain the body trace. The body trace can be marked as 
pedestrian and this also confirm the leg traces below in the 
lower zone. Generally, close pedestrian bodies are captured as 
non-smooth traces in a higher zone. The overlap of traces 
between upper and lower profiles show the propagation of 
pedestrian id upward. Figure 9 is an example that overlap 
stopping and stepping leg traces for the confirmation of 
pedestrians. 

V. EXPERIMENTS 
The method has been tested on Caltech video database [2] 

and partially on TASI Driving Video [22]. The former has a 
higher camera position and the image is 640×480 pixels, while 
the latter has images of 1280×720 pixels in a wider field of 
view. The horizon is calibrated for Caltech data set. The real 
parameters for setting zones in Caltech video are summarized 
in Table II. Only two zones are set for TASI data set for the 
lower camera positions. We select trace orientation θ to be 
five directions among [-45°, 45°], and the temporal m is 15 
pixels/frames in the motion profile over 24~30 frames of 

standing legs. Tracking threshold δ2 for short strokes are 
between (10-45) frames. Figure 10 gives an intermediate 
results marked as stripe and edges along with their lengths. 

 

 
(a)                                          (b)                                             (c) 

Fig. 10 Traces of edges (red), long stripes (pink) and short strips (white) in the 
results (c) obtained from the filtering result in (b) for the motion profile in (a).  

The detected position of a pedestrian is finer than a 
bounding box horizontally used in traditional human 
detection. Filtered results of stopping legs are obtained at the 
center of legs, and the tracked body traces also give 
continuous existence of pedestrians. We verify the pedestrian 
results against the ground truth of Caltech database by plotting 
the one-pixel wide trace onto the trajectories of bounding box 
with the changing width. Vertically, the detecting results are 
counted in zones and are less accurate than bounding box. On 
the other hand, the aspect ratio of pedestrians does not matter 
in the recognition. We count the number of frames a 
pedestrian is detected, which is the trace length in the motion 
profile, in evaluating the detection accuracy of our method. 
For example, the most complex video in Caltech dataset is a 
crowd at an intersection (Fig. 4) with our result for 1min clip 
(1811 frames) in Fig. 11. It results in 285 correct strokes 
(stopping steps), 88 missed strokes, 28 false positive strokes, 
and the stroke length is 30 frames in average. In general, the 
results from all layers are combined by OR operation; if one 
zone detects pedestrian legs, the above zones are considered as 
detected.  

As comparison with previous motion based methods, the 
HOGTM [17] detects perfect leg crossing on ideal leg-chains 
where pedestrians passing across a road viewed by a slow 

Table II: Setting parameters for implementation of filtering 
Zones from bottom 1 2 3 4 

 y coordinates in frame 286 
370 

254 
310 

233
270 

218
243 

Height hi in pixels 84 56 37 25 
Filter width for legs in pixels 45 36 27 21 
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moving camera. No complex situations such as occlusion and 
heavy trace skewing were dealt with. Although the ideal cases 
are the most significant for automated driving at local streets, 
only less than 1/4 of such pedestrians appear in the Caltech 
dataset; many people are on sidewalks, standing still, or even 
behind cars. This method compared to [19] results in much 
robust results as indicated in Fig. 12. The best result yields 
precision of 81% and sensitivity of 91%. After counting the 
detected traces and their lengths/frames, ROC curve is also 
plotted with fewer false positives than [19]. This is because 
the employed leg stroke has a more global scale than non-
smooth corner points used in [19].  

Figure 13 displays the detection curves in four zones by 
using 66 one-minute testing videos (119k frames) in Caltech 
data set before cross zone action is taken. By changing 
threshold δ1 over all possible values from minimum 1 to 
maximum 14, the obtained curves overlay with the those by 
other shape based methods, where curves drop as the threshold 
decreases. We can notice that this method is better at 
close/lower zones than at upper/far zones, because leg parts 
only have about half size of the entire body and the close one 
has a sufficient resolution. Overall detection rate is from 50% 

to 100% as threshold δ1 is lowered down as in Fig. 14. 
Moreover, the curve shows a lower false positive rate than 
others even with low δ1, which makes it better for a fast 
prescreening method in pedestrian detection. Our algorithm 
only needs to process four profile images out of a video clip, 
which makes it more efficient than processing entire images in 
the whole video volume as other shape based methods. 

We found that the method has better results on TASI dataset 
from 120 cars than Caltech dataset, partially because of the 
120 degree wide field of view of HD video, double in 
resolution, stable outdoor illuminaiton, and lower camera 
positions for fewer zones to capture motion rather than 
scanning ground. This is proved in Fig. 13 where close 
pedestrians have a better detection rate. 

The main reasons causing false positives by this filtering 
approach are: (1) the object stripe frequently occluded by 
moving objects at closer depths such as a queue of vehicles; 
(2) a few surface marks on the road. On the other hand, the 
false negatives mainly come from (a) far distance pedestrians 
whose leg chain is weak in the motion profile; (b) the trace 
skew due to fast vehicle turning and translation. Our method 
has better results in a close depth (lower zones) because of the 

    
(a)                                          (b)                                           (c)                                          (d) 

Fig. 11.  Detecting leg stripes after tracking trace length in a profile of Fig. 4. (a) Motion profile of one-minute long video, (b) Peak tracking after cascaded 
filtering, which contains both long and short stripes but all with slow motion. (c) Extracted short stripes in green and ignored long stripes in red. The intensity of 
two colors show the accumulated stripe length, (d) detected strokes of standing legs in red color overlaid onto motion profile (a). 
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simple ground surface and large pedestrian legs. 
This approach does not require intensive learning, but is 

more based on physical rules and human learned common 
walking characteristics. The detection result is less influenced 
from shape, color, and background in various environments. 
The disadvantages are (1) its incapablity in detecting humans 
standing still or whose legs are invisible due to occlusion. (2) 
detection with a delay for pedestrians to finish actions. The 
method has to track a leg trace untill it ends, which causes 
delay at most 30 frames, i.e., one second, designed by our 
method. The period tracked so far is declared to be a 
pedestrian at a certain depth. This means an action to avoid 
pedestrian needs to be taken immediately in real time vehicle 
control, if the depth is close. 

VI. CONCLUSION 
This paper introduced a new motion based method to 

detect walking pedestrians in driving video. Human leg 
trajectories are detected and the body traces are confirmed 
further. We focus on the stopping leg traces in contrast to long 
and smooth object trajectories, and propagate the information 
to body traces. The method also works crowd and other cases 
so that the results are more accurate than previous methods 
using motion. The implementation is mainly based on the 
cascade filtering on several motion profile images from video 
such that a high efficiency for on-board detection system can 
be achieved. The method has been tested on public video 
dataset for its effectiveness. 
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Fig. 12 Comparison with motion based method [17] 
with ROC in blue. Green dot is the missing rate by 

our method on the most complex video clip (Fig. 9). 
Red dot is the AVERAGE missing rates in Caltech 

video database by our method. 
 

 
Fig. 13 (left) Comparison of results from different zones after filtering with other typical shape 
based methods. Fig. 14 (right) A total detection curve of our method from all zones after OR 
operation of detected pedestrians. 
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